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Abstract—An optimized Ternary CAM concept is introduced
for the hardware search engines in high-speed Internet routers.
Our design employs + 1 RAM bits to store a word of size ,
whereas a conventional TCAM needs 2 RAM bits for the same
word size. Based on this concept an 8-bit cluster is designed out of
9 SRAM bits, used as the basic building block of our Prefix-CAM
(PCAM) structure. Four such clusters merge to store a 32-bit IPv4
prefix, thus, configuring a PCAM suitable for Internet packet
forwarding. This PCAM module employs 48% less SRAM cells
and a total of 22% less transistors plus 50% less address decode
interconnects compared to a conventional TCAM, for equal
storage size and equal functionality. We show that PCAM can be
employed for multifield packet classification. Other factors, such
as lookup speed and power dissipation, are not adversely affected.

Index Terms—Forwarding engine, packet classification, prefix-
CAM, route lookup table, ternary content addressable memory.

I. INTRODUCTION

A. Motivation

NOWADAYS, more hardware architects than ever look
into content addressable memory (CAM) for high-per-

formance table lookup tasks [1]–[3]. Various types of CAM
intellectual property cores are available in the market for
rapid integration. CAD tools, design automation environments,
and field programmable gate array (FPGA) based systems
have become more CAM-aware than ever. A specifically in-
teresting type of CAM, called Ternary CAM (TCAM), can
store don’t-care values in addition to 0’s and 1’s. Using this
capability, the TCAM entries can include wild-cards. Due to
the wild-cards, a search key may match multiple entries. In this
case, a TCAM with properly structured content can produce the
highest priority (or the most specific) result. TCAM completes
each lookup task in just one clock cycle.

For most networking applications, all the wild-cards are lo-
cated at the right side of the primitive data element, called prefix.
In case of basic Internet Protocol (IP) packet forwarding, each
data element is a single prefix that represents an Internet route.
The search keys are the IP destination addresses. The priority
is determined based on the prefix length. Therefore, when a
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destination address matches multiple route prefixes the longest,
which defines the most specific route, will be chosen [4], [5].

For purposes such as quality of service and security, a router
has to classify incoming IP packets at maximum speed. In case
of packet classification, each table entry, called a rule, can be
comprised of multiple data fields. Each field is usually a com-
plete binary value or a prefix. Rarely, a field can contain wild-
cards in arbitrary locations [6]. A packet classification task re-
quires a multidimensional search. The search key is composed
of IP, transfer control protocol (TCP), and occasionally datalink
or even application header fields. The search time and/or storage
complexity of software-based algorithmic approaches are usu-
ally very high. The great advantage of TCAM is that once all
the data fields in a rule are attached, the classification lookup
can take place in only one clock cycle [7].

One of the first works to describe ternary CAM was [8].
Later, they introduced a hardware search engine based on that
circuit [9]. While simplicity and high performance are the main
reasons for designers to choose TCAM for hardware-based
search applications, high-power dissipation and low-storage
density remain the two major concerns with this technology,
which makes it a hot topic of ongoing research in both industry
and academia (a few recent examples are [10]–[13]). Our
design, called Prefix-CAM (PCAM), primarily addresses the
storage density problem [28].

B. Key Novelty

One of the problems of TCAM, in addition to high power
dissipation, is its low-storage density due to the high number of
transistors per cell. Each TCAM cell requires 16 transistors [15]
(12 in some literature [16]), as opposed to 6 for SRAM or 2 for
DRAM [19]. This has inspired some researchers to offer heuris-
tics that optimize TCAM usage [20], [21]. In the state-of-the-art
TCAM technology, bits at any arbitrary position in a word can
be masked independently. This flexibility comes at a cost. Each
cell includes two SRAM (DRAM) bits to store each of the three
possible states of the cell, namely 0, 1, and don’t-care. How-
ever, most of the networking applications of TCAM do not re-
quire such flexibility. The major application of high-density,
fast, low-power TCAM products is in the classification and for-
warding engines of broadband Internet routers. The majority of
such applications need to store and search prefixes [5], [22]. All
of the masked bits in a prefix are adjacent and are gathered at
the right side. For example, is a 10–stabit IP prefix
shown in binary. The 22 lower bits of this prefix are masked. On
the other hand, ( denotes one don’t-care bit here) is not
a valid prefix because it has a masked bit surrounded by valid
bits.

1063-8210/$20.00 © 2006 IEEE
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Fig. 1. Basic structure of a TCAM module.

Currently, in a TCAM module with a width of (i.e., each
word stores a prefix with a maximum length of ), SRAM
bits are needed per word (see Fig. 2). On the other hand, all the
valid combinations of -bit IP prefixes accumulate to
values (null prefix plus the number of all 1-bit prefixes plus all
2-bit prefixes, all the way to the -bit prefixes, or

). This can be represented with no more than
RAM bits, instead of . For , that means 48.4%

reduction in memory usage. This is an initiative to introduce a
modified TCAM design that effectively saves silicon area, while
providing a performance similar to state-of-the-art TCAM.

Our design will alter the structure of a TCAM word and, thus,
the way prefixes are stored and the masked comparison oper-
ation is performed. However, the changes remain transparent
to users and the general TCAM architecture (shown in Fig. 1)
is maintained. Therefore, all behavioral schemes of state-of-
the-art TCAM (i.e., prefix sorting, updating algorithms, etc.) are
perfectly applicable to our PCAM.

C. Paper Organization

The rest of this paper is organized as follows. This section
will continue by clarifying necessary assumptions and defini-
tions that will be used throughout the paper. Then, the conven-
tional TCAM design is explained in Section II-B, to be used as
a reference model for comparison purposes. The motivation be-
hind this work is explained in Section I-B. Section III explains
the main contribution of this paper. We first derive the opti-
mized logic equations, then describe the circuitry for our novel
PCAM. Then, two additional functional units (decoder and en-
coder) necessary for this design are introduced. Section IV ex-
tends the application of PCAM for the general case of multidi-
mensional packet classification. Section V summarizes our im-
plementation results and practical observations. Paper summary
and conclusions appear in Section VI.

II. BACKGROUND

A. Assumptions and Definitions

In this paper, we discuss static TCAM circuit where memory
cells are SRAM. The majority of high-end commercial TCAM
chips are static. Many of the discussions and examples in this

paper are presented for IPv4. However, it can be easily demon-
strated that the results are directly applicable to IPv6 as search
engines apply similar procedures (with different search-key
lengths) to both. In fact, IPv6 is more storage-hungry and thus
our solution can even be more beneficial to this protocol than
IPv4.

Any prefix can be shown in binary radix as a string of
1’s and 0’s, followed by a wild-card symbol that marks
all other bits at the right side of prefix as don’t-care.
For instance, is an 11-bit prefix.
We will also show prefix as a value and mask

pair, i.e.,
, where is the maximum width of prefix.

Also, ,
, and .

Therefore, bit of prefix is denoted by . A mask bit
is 1 wherever the prefix value is don’t-care and 0 where the

value is valid. So, if then,
.

In this example, , , and .
Traditionally, an IPv4 prefix such as might also be repre-
sented as 152.160/11, which indicates that the meaningful part
of the prefix value at the left side of the sign, and the prefix
length at the right side of it.

B. The Reference Model

Fig. 1 shows the basic structure of a TCAM used in many
of the state-of-the-art Internet forwarding and classification en-
gines [14]. In this structure, the entries are sorted based on their
priorities. Higher priority entries are placed in memory loca-
tions with higher addresses. A given search key is distributed
among all memory locations at the same time. Then, the results
of the masked comparisons, performed by all TCAM words si-
multaneously, are taken into a huge priority encoder that gives
priority to the higher memory locations. Therefore, the index of
the highest priority element will be chosen in case of multiple
matches. This index may then be used to extract corresponding
classification or forwarding information such as egress number
from an SRAM module that has entries, one for each TCAM
entry.
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Fig. 2. Conventional TCAM cell.

The block diagram of a single TCAM cell is shown in Fig. 2.
It is a straightforward SRAM based combination of a value bit
(CAM) and a mask bit. A CAM bit is comprised of an SRAM
cell and an XOR gate [15]. The XOR gate compares the content
of the SRAM cell with the input comparand (given as the dif-
ferential signal and ). Mask bit is also an SRAM
cell. When mask bit is at logic 0, the CAM bit is valid and par-
ticipates in the comparison. When mask bit is at logic 1, the
CAM bit is don’t-care and the comparison operation generates
a match regardless of the value of the CAM bit. A TCAM word
of width (one line in Fig. 1) replicates such cell times, con-
nected together through WL, MWL, and ML. ML is the single
output of each TCAM word that is taken to the priority encoder
to determine the match index (see Fig. 1).

At the beginning of every search operation, the Match Line
is precharged to the VDD level. For each TCAM cell in a word,
the input data bit to be searched (called key or comparand)
is given as a differential value on and lines. If
every TCAM cell in a word either matches the comparand bit
or is masked then match line stays charged, which indicates a
word match. If for any cell in the TCAM word the mask bit is
0 and the CAM bit does not match the comparand,
then the comparison circuit connects the match line to ground.
That would discharge the match line that indicates a word mis-
match. The above explanation can be symbolized as the fol-
lowing equation:

(1)

In this equation is the result of comparison
between CAM cell content and comparand bit. The comparison

logic of a TCAM word is a pseudo-NMOS implementation of
(1) on element of which is shown in Fig. 2.

C. Implementation Alternatives

CAM bit (cell) optimization for speed, power, and area is a
very well-studied subject in the literature. The reference model
discussed in Section II-B is based on CAM (TCAM) circuits
presented in [1] ([15]). We chose this implementation of CAM
cell due to its simplicity. However, as is the
universal behavior of a CAM cell, any other implementation
can also be employed in the PCAM architecture. The novelty of
PCAM architecture is not in its CAM cells. Rather, it is in the
way that the IP prefixes are encoded and architectured within a
word. We will elaborate on this in Section III.

The CAM/TCAM cell design and optimization is not the
focal point of our work. Yet, to be more informative, here we
comment briefly on other alternatives and their pros and cons.

• NOR- versus NAND-Type Match-Line Circuit: The CAM
cell shown in Fig. 2 belongs to the first category that
uses a NOR-type circuit to generate the match-line. Refer-
ences [1], [21], and [29] are other examples of employing
NOR-type circuit. Another alternative is to use a NAND-type
match-line. Some examples, reported in literature, are [30]
and [18]. NAND-type circuits are in general slower because
the match-line drivers (transistors) belonging to a word are
connected in series. But the search current in the match cir-
cuit and, thus, the overall power consumption is reduced.
In spite of higher speed, the NOR-type match circuit may
experience lower noise margins (e.g., instead of

when NMOS match-line drivers are used).



AKHBARIZADEH et al.: A NONREDUNDANT TERNARY CAM CIRCUIT FOR NETWORK SEARCH ENGINES 271

• PMOS versus NMOS Drivers in CAM Cell: In some
implementations (e.g., [1], [18]), researchers used PMOS
transistors for the comparison logic instead of NMOS. This
design saves some dynamic power by limiting the voltage
swing on ML between and . It also saves some sil-
icon area by minimizing the gap between and
areas. But in order to achieve the same mobility as that
of the NMOS transistor, the width of the PMOS transistor
should be at least doubled due to the fact that PMOS has al-
most 50% less mobility than that of an NMOS counterpart.
If the PMOS are sized the same as that of the NMOS com-
parison transistor, there will be an increase in the search
time. We preferred to stay with the more standard NMOS
comparison logic for this design.

• NAND- versus XOR-Based TCAM Cell: Our reference
model of Fig. 2 used an XOR-based TCAM cell. Another
widely known TCAM cell is the NAND-based design [16].
Like the XOR-based design, there are two SRAM cells plus
four comparison transistors here. Only, the comparison
logic is in the form of NAND logic and data is stored
differently. If standard six-transistor (6T) SRAM cells are
used, then the resulting TCAM cell has 16 transistors,
just like the previous design. Authors in [16] employ 4T
SRAM cells [17] for this cell to get 12T TCAM cells. Note
that it is conceptually possible to use 4T SRAM cells for
the XOR based design as well. The only clear functional
difference between the two cells is that the NAND-based
cell produces a mismatch regardless of the comparand
value, when the cell contains an 11-bit combination. But it
is more efficient to implement such functionality using a
valid bit. The rest of this paper develops on the XOR-based
TCAM cell design, as deriving our final equations from
the XOR-based TCAM equations is more straightforward.

III. PCAM

The design challenge ahead of us was that any -bit prefix
has to be encoded prior to being stored in a TCAM word that has
only SRAM bits. The employed encoding method must
need minimal logic for masked comparisons. The comparison
logic is the overhead and must be small enough to preserve a
major portion of the area released by eliminating the mask bits.
The rest of this section is a step by step development of such a
design. The design is called PCAM.

A. The Prefix Encoding Method

Let be the array of SRAM
cells storing a bits encoded bit-string for which the generic

-bit prefix is .
The encoding method is defined by the following equation:1

when
when
when
when .

(2)

Since all the bits to the right of a masked bit in a prefix are also
masked, the above definition conveys that a bit is masked if and

1The symbols +, �, , and are used as Boolean notations.

only if all its right-hand bits are set to 1. Also, in the definition
consider that if is masked and is not, then (i.e., the
most significant masked bit is equal to zero). Considering this
point, the above definition can be simplified for implementation
as follows:

when
when
when .

(3)

For example, if the 8-bit prefix
then (3 bits masked).

A similar encoding method is used by [23] in a route lookup
scheme without TCAM.

On the other hand, considering the above discussion, to con-
vert an encoded prefix back to its conventional (value, mask)
form, these equations must be used:

(4)

(5)

For instance, given a 9-bit encoded prefix
the original decoded 8-bit prefix

would be (1 bit
masked).

B. Circuit Design for the PCAM

Our steps toward a new design start from the reference TCAM
circuit (see Fig. 2). In a TCAM word made by replicating that
circuit times the match-line (ML) logic is given by (1).

After replacing all in (1) with the right side of (5) and
applying DeMorgan’s Law, we get

(6)

Equation (6) describes aw-bit TCAM word that requires
SRAM cells, instead of in the reference model. For ,
the required number of SRAM cells to implement (6), is 9 versus
16 in conventional TCAM (43.8% reduction). Also, this imple-
mentation translates to a total of 17.2% reduction in transistor
usage. If grows beyond eight, the area gain starts falling to
a point that it could even become negative. On the other hand,
still more transistors can be saved by carefully factorizing the
expression in (6), which gives us (7)

(7)

Even after factorizing, eight is the optimum value for ,
as our calculations and experimentations showed. Fig. 3
demonstrates the net-list resulted from (7). Word line ,
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Fig. 3. PCAM Cluster-9 that stores an 8-bit prefix. For clarity of the figure, word line (W;L), bit lines (BL[7 : �1]; BL[7 : �1]), and comparand lines
(CMP [7 : 0]; CMP [7 : 0]) are hidden.

Fig. 4. Thirty-two-bit PCAM word.

bit lines , and comparand lines
are hidden in this figure to make

it less crowded and easy to comprehend. The CAM and SRAM
cells in this figure are the same as the CAM and SRAM cells
in Fig. 2, only and in that figure are here advertised as
and , respectively. Let us call this circuit Cluster-9. When
implemented, (7) requires only 21 NMOS transistors. That
results in a total of 99 transistors for a Cluster-9, which is
22.7% less than a conventional TCAM word of size 8. In a
PCAM module, four of such clusters should be put together,
connected only through match line and word line, to make
room for a 32-bit IPv4 prefix. This is visualized in Fig. 4. For
example, prefix
would be encoded to four slices to be stored in four Cluster-9s,
i.e., , , ,
and . IPv6 requires 16 Cluster-9 units put
together to make room for a single 128-bit prefix. Of course,
both IPv4 and IPv6 forwarding engines can have elements
other than address prefix in each entry, such as Virtual Private
Network Id (VPN). These are typically exact (neither range nor
prefix) fields. Additional Cluster-9 units can be appended to
each line to allocate such fields.

If the 6T SRAM cells in this design are replaced by
4T SRAM cells [17], the number of transistors in Cluster-9
will be further reduced to 81. However, 4T SRAM technology
has complex process and poor stability in low voltages [17],
and a 6T SRAM cell is more standard in designs reported by
both academia and industry. Therefore, in this paper we use
Cluster-9 with the original 6T SRAM cells.

C. Encoder and Decoder Units

A TCAM part constructed around the PCAM idea, has to
offer a conventional interface to the outside world. The prefixes
written to and read from this TCAM should have the classic
(Value,Mask) representation. Therefore, encoding and decoding
are needed to convert the classic prefixes to encoded ones for
writing and transforming the encoded words to pairs for
reading.

1) Encoding unit for write operations: The encoder imple-
ments the set of (3). This unit should not be mistaken with
the priority encoder unit that exists at the output stage of all
TCAM modules to resolve multiple matches. When ,
four such blocks are required to implement a 32-bit prefix
encoder. Fig. 5(a) shows such 4-block configuration. This
configuration works directly in conjunction with the 32-bit
PCAM word of Fig. 4. To revisit the example given at the
end of Section III-B, Encoder0 generates (to be stored
in Cluster9-0 of Fig. 4), Encoder1 generates (to be
stored in Cluster9-1 of Fig. 4), and so on.

Since a small combinational logic block combines
prefix value and prefix mask into a single encoded word,
the write operation can be done in one cycle. The same
operation would require two cycles to fulfill, through the
shared bit-line interconnects, in a conventional TCAM,
one cycle to write the value and a second cycle to write
the mask.

2) Decoding unit for read operations: Addressed read oper-
ation is not a primary feature expected from a TCAM de-
vice. TCAMs normally output their search result only. Yet,
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Fig. 5. Encoder and decoder blocks for a 32-bit PCAM module. (a) Encoder for
32-bit PCAM write operations. (b) Decoder for 32-bit PCAM read operations.

at times it may become handy to be able to read a particular
location within a TCAM given the address of that location.
In such cases, to convert the read prefix to its classic
form for output, a decoder block is necessary.

The decoder implements (4) and (5) for the prefix value
and mask , respectively.

For a PCAM of width 32, when , four such
decoder blocks are necessary to fully decode one word.
Fig. 5(b) shows such preparation. All Cluster-9 blocks of
order 0 (as shown in Fig. 4) connect their bit lines to De-
coder0 which will produce ,
and so forth.

The encoded prefixes within PCAM can be read in one
cycle. Furthermore, the decoder block implements simple
combinational logic that can be done within the same cycle.
Therefore, prefix reading can be performed in one cycle.
The same operation would need two clock cycles in con-
ventional TCAM with shared bit line, one cycle to read the
value and a second cycle to read the mask.

Note that neither Encoder nor Decoder has any negative im-
pact on common TCAM updating algorithms. PCAM fits in the
basic TCAM architecture (Fig. 1), thus, complying with all the
updating algorithms that pertain to this architecture. For exam-
ples of such updating algorithms see [24].

IV. HYBRID STRUCTURE FOR PACKET CLASSIFICATION

A PCAM module based on Cluster-9 unit introduced in the
previous section will have a granularity of eight. It means every
data field must be truncated into 8-bit prefix chunks. Fortunately,
this works for nearly all the header fields used commonly in
packet classification applications. Table I lists the layer two,

TABLE I
SOME HEADER FIELDS THAT MAY BE USED FOR IPV4 PACKET CLASSIFICATION

three, and four fields conventionally used for packet classifica-
tion, and the way they are normally represented in the rules table
[6]. As the table shows, all but one field value is commonly ex-
pressed as either complete value (exact match lookup), prefix,
or range. A range is often converted to prefixes before being
stored in any TCAM [6]. All the header fields listed in this table
have a length which is a multiple of eight and all but one of
them are stored as prefixes or exact values in TCAM. The only
exception is the 8-bit L4-Prtcl (layer-4 protocol number) field
in the IP header. Wild-cards can appear arbitrarily in any posi-
tion of this field in the rules table. However, the number of oc-
casions when such arbitrary wild-card is required is relatively
small. The protocol field only appears in a 5-tuple rules table
where the width of each rule is 104 bits, 96 bits of which is allo-
cated by L3-DA (32 bits prefix), L3-SA (32 bits prefix), L4-DP
(16 bits range), and L4-SP (16 bits range). Only 8 bits out of
104, or 7.7% of the rule bits, need to be arbitrarily maskable.
Therefore, enough flexibility can be added to the architecture
by adding a few TCAM bits to each PCAM line. In such hybrid
PCAM module, each line is comprised of few TCAM bits at-
tached to a long line of Cluster-9 units. Arbitrary data fields are
allocated on the TCAM portion and the rest of the rule elements
use Cluster-9 units for storage.

A viable design option is 64 bits as the basic line width in
which 8 bits are TCAM and 56 bits are PCAM (7 Cluster-9
units). Adding TCAM bits to a PCAM line is straightforward.
It is simply done by connecting them through the WL and ML
lines. Of course, the TCAM bits would also need separate MWL
interconnects. Fig. 6 illustrates the idea. Consequently, 12.5%
of the hybrid PCAM chip would be occupied by conventional
TCAM circuitry. Since 87.5% of the storage is PCAM, which
is over 20% more dense than conventional TCAM, more than a
17% increase of device density is still gained. The resulting chip
is capable of employing multidimensional packet classification
applications.

V. EXPERIMENTAL RESULTS

A. Word Implementation

To examine the merits of our approach in practice, layouts
for a PCAM module and a TCAM module were implemented
in Cadence [25]. The design rule was the Taiwan Semiconductor
Manufacturing Company (TSMC) 0.18- m library provided by
Mosis [26] with V. A 32-bit conventional TCAM
word and a 32-bit PCAM word are demonstrated in Fig. 7(a) and
(b), respectively. The layouts are shown in the same scale so that



274 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 3, MARCH 2006

Fig. 6. Sixty-four-bit hybrid configuration of 8 TCAM bits and 56 PCAM bits.

Fig. 7. Layouts for 32-bit TCAM and PCAM words: (a) 32-bit conventional TCAM word and (b) 32-bit PCAM word.

their size correspondence is preserved. To make it easy for the
reader to compare them visually, the layouts are composed in a
square shape formed of four similar rows. For the TCAM word,
each row has eight cells. For the PCAM word, each row consists
of a Cluster-9 unit. The cell stability and noise tolerance issues
are already incorporated in the layout design.

The NMOS and PMOS devices of the CAM cells in both lay-
outs are sized similarly. The mask SRAM bits in TCAM are
sized similar to the SRAM bits in CAM cells (see Fig. 2). In
spite of differences in comparison logic, both TCAM (Fig. 2)
and PCAM (Fig. 3) experience the same topology during the dis-
charge of match line (ML). Note carefully that in PCAM (Fig. 3)
if there is a mismatch, any path from ML to ground passes
through only a pair of series NMOS transistors. In other words,
the path during mismatch in both TCAM and PCAM structures
will have only two minimum-sized transistors. Therefore, from
implementation point of view, transistor sizing in both cases will
be the same.

Table II summarizes one of the test scenarios used to verify
the functionality and timing behavior of PCAM. An 8-bit prefix
is used for simplicity. The experiment is visualized in Fig. 8,
showing only the affected signals. Notice that for PCAM content
complemented signals are shown, i.e., , , , and . At the

TABLE II
DEMONSTRATION OF A PCAM WORD FUNCTIONALITY IN FOUR STEPS

beginning of step one, the encoded prefix 010101011 (encoded
form of the 6-bit prefix ) is present in memory. The first
two bits of the prefix are masked. At this step, the key 01010101
is placed on the comparand lines which generates a match (last
line of the table). This can be observed at ns on the
waveforms of Fig. 8. To show that masked bits do not affect the
search operation, step two toggles the first two bits of the key
( and ). As expected, 01010110 also generates a
match ( ns on the same figure). Step three changes the
third bit of the key . The result will be a mismatch (

ns on the waveform) because this location is not masked. In
step four, the prefix is changed to 010100111. Now three bits
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Fig. 8. Simulation waveforms for four test samples.

TABLE III
COMPARING PCAM AND THE CONVENTIONAL TCAM

are masked instead of two, which will cause the same key in
step three to generate a match ( ns on the waveform).

Extensive simulation was performed for different mask
lengths and various sequences of input to compare the timing
and power performance of PCAM against the reference TCAM.
The worst case timing results are summarized in Table III for
both PCAM and the reference model. This table shows the
major delay factors: rise time , fall time , and propaga-
tion delays ( and ), as well as the worst case dynamic
power dissipation for three different temperatures. ML
always drives a double standard inverter load.
and for both TCAM and PCAM. Delays are
all reported in nanoseconds and power dissipation is reported
in milliwatts. is obtained by applying 400 random patterns
with a 6-ns rate.

As the table shows, PCAM catches up with the reference
model both in terms of speed and dynamic power consump-
tion. Cutting the number of transistors does not have any notice-
able negative effect on the performance of PCAM. Moreover,
the reduced number of transistor causes a reduction in the av-
erage static power consumption due to leakage current, which
is important in deep-submicrometer technologies where static
power is the dominant factor in the overall power consumption
and increases exponentially with the reduction of transistor size.
PCAM static power consumption, due to current leakage, is at
least 18% smaller than TCAM in all our observations. Although
in most cases, the improvement was better than 24%.

TABLE IV
SIMULATION RESULTS FOR 32-BIT ENCODER AND DECODER BLOCKS

B. Encoder and Decoder Blocks

The encoder and decoder blocks (Fig. 5) were evaluated sep-
arately because they are new units, which need to be justified
in terms of size and performance. None of these blocks affects
search performance. The encoder affects the critical path of
write circuitry while the decoder affects the read critical path.
The delays (in nanoseconds) and sizes (in number of MFET
transistors) of both blocks are summarized in Table IV. The
sizes of both blocks are negligible compared to the total size
of a regular TCAM.

C. Layout

The 2-kb modules are configured as lines columns.
For the purpose of visual comparison, both annotated layouts
are shown in Fig. 9. Both layouts use three layers of metal in
most parts. Metal 4 is used only in one occasion in each layout.

Table V summarizes the key metrics for our PCAM/TCAM
structures, as well as three similar implementations reported in
the literature. Due to differences in technology, size, cell-library,
and design objectives (e.g., area, power), a direct comparison
of these implementations is not possible. Specifically, as we ex-
plained in Section II-B, we chose a straightforward structure for
the base CAM/TCAM cell (Fig. 2) to continue implementing
PCAM architecture. We made no efforts to customize the CAM
cell itself. Without such customization, as Table V shows, it is
expected that the size of our TCAM/PCAM cells be larger than
others (e.g., [21] or [31]).

Our main goals of showing Table V are: 1) to illustrate that
our implementation has comparable size, performance, and
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Fig. 9. Layouts for 2-Kb TCAM and PCAM modules.

TABLE V
COMPARING PCAM WITH PREVIOUS WORK FOR KEY METRICS

power and 2) to compare TCAM and PCAM full architectures
(columns two and three) using the same base CAM cell. In
particular, the core area statistics show that PCAM imple-
mentation consumes at least 16% less area while it achieves
higher or comparable speed. Note that in terms of power perfor-
mance metric, PCAM/TCAM implementation indicates higher
values than those of [18]. This is because this reference has a
specifically targeted low-power technique for its CAM/TCAM
architecture while our TCAM/PCAM implementation is aimed
at reducing the area, not the power.

The main area saving in PCAM is due to cell part and
other units (address decoder, priority encoder, etc.) do not
grow with the same rate as the cell part. Therefore, we
expect to get more area saving for larger PCAM. We con-
firmed this by implementing 64-kb PCAM and TCAM

modules. The 64-kb TCAM and PCAM module layout
sizes are mm and

mm . Thus, the percentage
of reduced area is .
This is quite close to the estimation obtained from counting the
transistors.

VI. CONCLUSION

This paper introduces PCAM design, which is a TCAM op-
timized for prefix storage and lookup applications. Such ap-
plications include high-speed Internet packet classification and
forwarding, where lookup tables are huge and the appetite for
higher storage density is always growing. To address this con-
cern, our design removes the explicit mask bits from TCAM
cells, hence, reducing the number of RAM cells in PCAM by
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43.8% compared to a conventional design. Some logic is then
added to compensate for the reduced number of memory cells.
Eventually, the number of transistors is reduced by 22%. This
approach also removes all mask word lines, which are long in-
terconnects going to each and every TCAM word. PCAM struc-
ture can also reduce the static power consumption which is im-
portant for deep submicron technologies. Implemented layouts
confirmed the increased device density for PCAM module com-
pared to the conventional TCAM. All these improvements are
achieved without sacrificing performance or functionality.
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